手機(jī)、筆記本電腦等電子消費(fèi)品如何更輕更薄,電動(dòng)汽車如何在有限的車體空間內(nèi)擁有更長續(xù)航里程的電量……隨著人們對(duì)儲(chǔ)能需求的日趨旺盛,對(duì)二次電池的性能也提出了越來越高的要求。納米技術(shù)可以使電池“更輕”、“更快”,但由于納米材料較低的密度,“更小”成為橫亙?cè)趦?chǔ)能領(lǐng)域科研工作者面前的一道難題。
國家杰出青年科學(xué)基金獲得者、天津大學(xué)化工學(xué)院楊全紅教授研究團(tuán)隊(duì)提出“硫模板法”,通過對(duì)高體積能量密度鋰離子電池負(fù)極材料的設(shè)計(jì),最終完成石墨烯對(duì)活性顆粒包裹的“量體裁衣”,使鋰離子電池變得“更小”成為可能。該成果1月26日在線發(fā)表在《Nature Communications》(2018, 9, 402)上。
作為當(dāng)下使用最廣泛的二次電池,鋰離子電池具有很高的能量密度。錫、硅等非碳材料有望取代目前商用石墨作為新一代負(fù)極材料,大幅提高鋰離子電池的質(zhì)量能量密度(Wh kg-1),但其巨大的體積膨脹嚴(yán)重限制了其體積性能優(yōu)勢的發(fā)揮。碳納米材料構(gòu)建的碳籠結(jié)構(gòu)被認(rèn)為是解決非碳負(fù)極材料嵌鋰時(shí)巨大體積膨脹問題的主要手段;但在碳緩沖網(wǎng)絡(luò)的構(gòu)建過程中,常常引入過多的預(yù)留空間,導(dǎo)致電極材料的密度大幅降低,限制了鋰離子電池負(fù)極體積性能的發(fā)揮。因此對(duì)碳籠結(jié)構(gòu)的精確定制,不僅是重要的學(xué)術(shù)難題,也是新型高性能負(fù)極材料產(chǎn)業(yè)化的必由之路。
楊全紅教授研究團(tuán)隊(duì)聯(lián)合清華大學(xué)、國家納米中心和日本國立材料研究所的合作者在高體積能量密度鋰離子電池負(fù)極材料設(shè)計(jì)方面取得突破,基于石墨烯界面組裝,發(fā)明了對(duì)致密多孔碳籠精確定制的硫模板技術(shù)。他們?cè)诓捎妹?xì)蒸發(fā)技術(shù)構(gòu)建致密石墨烯網(wǎng)絡(luò)的過程中,引入硫作為一種可流動(dòng)的體積模板,為非碳活性顆粒完成了石墨烯碳外衣的定制。通過調(diào)制硫模板使用量,可以精確調(diào)控三維石墨烯碳籠結(jié)構(gòu),實(shí)現(xiàn)對(duì)非碳活性顆粒大小“合身”的包覆,從而在有效緩沖非碳活性顆粒嵌鋰巨大體積膨脹的基礎(chǔ)上,作為鋰離子電池負(fù)極表現(xiàn)出優(yōu)異的體積性能。
圖 硫模板法精確設(shè)計(jì)石墨烯碳籠結(jié)構(gòu)
硫模板法的提出,是在三維石墨烯致密網(wǎng)絡(luò)中,巧妙利用硫如同“變形金剛”一樣的流動(dòng)性、無定形,以及易去除等特點(diǎn),在碳籠結(jié)構(gòu)內(nèi)部實(shí)現(xiàn)對(duì)非碳活性顆粒如二氧化錫納米顆粒的緊密包覆。與傳統(tǒng)的“形狀”模板相比,硫模板的最大優(yōu)勢就是能發(fā)揮可塑型的體積模板作用,使緊致的石墨烯籠結(jié)構(gòu)能夠提供適形且尺寸精確可控的預(yù)留空間,最終完成針對(duì)活性二氧化錫的“量體裁衣”。這種具有合適預(yù)留空間且保持高密度的碳-非碳復(fù)合電極材料能貢獻(xiàn)出極高的體積比容量,從而大幅度提高鋰離子電池的體積能量密度,使鋰離子電池變得更小。這種 “量體裁衣”的設(shè)計(jì)思想可以拓展為普適化的下一代高能鋰離子電池和鋰硫電池、鋰空氣電池等電極材料的構(gòu)建策略。
楊全紅教授研究團(tuán)隊(duì)近年來在強(qiáng)調(diào)器件體積性能的致密儲(chǔ)能領(lǐng)域取得了一系列重要進(jìn)展,發(fā)明了石墨烯凝膠的毛細(xì)蒸發(fā)致密化策略,解決了碳材料高密度和孔隙率“魚和熊掌不可兼得”的瓶頸問題,得到高密度的多孔碳材料;追求儲(chǔ)能器件的小體積、高容量,從策略、方法、材料、電極、器件等五個(gè)方面提出了高體積能量密度儲(chǔ)能器件的設(shè)計(jì)原則,最終從超級(jí)電容器、鈉離子電容器、鋰硫電池、鋰空氣電池到鋰離子電池實(shí)現(xiàn)了高體積容量儲(chǔ)能材料、電極、器件的構(gòu)建,為碳納米材料的實(shí)用化奠定了基礎(chǔ),有力推進(jìn)了基于碳納米材料新型電化學(xué)儲(chǔ)能器件的實(shí)用化進(jìn)程。